Iron objects of great age are much rarer than objects made of gold or silver due to the ease of corrosion of iron. Beads made of meteoric iron in 3500 B.C. or earlier were found in Gerzah, Egypt by G. A. Wainwright.

Read More


Mechanical properties of iron and its alloys are evaluated using a variety of tests, such as the Brinell test, Rockwell test, or tensile strength tests, among others; the results on iron are so consistent that iron is often used to calibrate measurements or to relate the results of one test to another.

Read More


Comments Off on History

Wrought iron

Iron objects of great age are much rarer than objects made of gold or silver due to the ease of corrosion of iron. Beads made of meteoric iron in 3500 B.C. or earlier were found in Gerzah, Egypt by G. A. Wainwright. The beads contain 7.5% nickel, which is a signature of meteoric origin since iron found in the Earth’s crust has very little to no nickel content. Meteoric iron was highly regarded due to its origin in the heavens and was often used to forge weapons and tools or whole specimens placed in churches. Items that were likely made of iron by Egyptians date from 2500 to 3000 BC. Iron had a distinct advantage over bronze in warfare implements. It was much harder and more durable than bronze, although susceptible to rust. However, this is contested. Hittitologist Trevor Bryce argues that before advanced iron-working techniques were developed in Europe and India, cast-iron weapons used by early Mesopotamian armies had a tendency to shatter in combat, due to their high carbon content.

The first iron production started in the Middle Bronze Age but it took several centuries before iron displaced bronze. Samples of smelted iron from Asmar, Mesopotamia and Tall Chagar Bazaar in northern Syria were made sometime between 2700 and 3000 BC. The Hittites appear to be the first to understand the production of iron from its ores and regard it highly in their society. They began to smelt iron between 1500 and 1200 BC and the practice spread to the rest of the Near East after their empire fell in 1180 BC.The subsequent period is called the Iron Age. Iron smelting, and thus the Iron Age, reached Europe two hundred years later and arrived in Zimbabwe, Africa by the 8th century.

Cast iron

Cast iron was first produced in China about 550 BC, but was hardly in Europe until the medieval period. During the medieval period, means were found in Europe of producing wrought iron from cast iron (in this context known as pig iron) using finery forges. For all these processes, charcoal was required as fuel.

Medieval blast furnaces were about 10 feet (3.0 m) tall and made of fireproof brick; forced air was usually provided by hand-operated bellows. Modern blast furnaces have grown much bigger.In 1709, Abraham Darby I established a coke-fired blast furnace to produce cast iron. The ensuing availability of inexpensive iron was one of the factors leading to the Industrial Revolution. Toward the end of the 18th century, cast iron began to replace wrought iron for certain purposes, because it was cheaper. Carbon content in iron wasn’t implicated as the reason for the differences in properties of wrought iron, cast iron and steel until the 18th century. Since iron was becoming cheaper and more plentiful, it also became a major structural material following the building of the innovative first iron bridge in 1778.


Steel (with smaller carbon content than pig iron but more than wrought iron) was first produced in antiquity by using a bloomery. Blacksmiths in Luristan in western Iran were making good steel by 1000 BC. Then improved versions, Wootz steel by India and Damascus steel by China were developed around 300 B.C. and 500 A.D. respectively. These methods were specialized, and so steel did not become a major commodity until the 1850s.

New methods of producing it by carburizing bars of iron in the cementation process were devised in the 17th century AD. In the Industrial Revolution, new methods of producing bar iron without charcoal were devised and these were later applied to produce steel. In the late 1850s, Henry Bessemer invented a new steelmaking process, involving blowing air through molten pig iron, to produce mild steel. This made steel much more economical, thereby leading to wrought iron no longer being produced.


Comments Off on Characteristics

Mechanical properties

Mechanical properties of iron and its alloys are evaluated using a variety of tests, such as the Brinell test, Rockwell test, or tensile strength tests, among others; the results on iron are so consistent that iron is often used to calibrate measurements or to relate the results of one test to another. Those measurements reveal that mechanical properties of iron crucially depend on purity: Purest research-purpose single crystals of iron are softer than aluminium. Addition of only 10 parts per million of carbon doubles their strength. The hardness increases rapidly with carbon content up to 0.2% and saturates at ~0.6%. The purest industrially produced iron (about 99.99% purity) has a hardness of 20–30 Brinell.

Phase diagram and allotropes

Iron represents an example of allotropy in a metal. There are at least four allotropic forms of iron, known as α, γ, δ, and ε; at very high pressures, some controversial experimental evidence exists for a phase β stable at very high pressures and temperatures. As molten iron cools down it crystallizes at 1538 °C into its δ allotrope, which has a body-centered cubic (bcc) crystal structure. As it cools further its crystal structure changes to face-centered cubic (fcc) at 1394 °C, when it is known as γ-iron, or austenite. At 912 °C the crystal structure again becomes bcc as α-iron, or ferrite, is formed, and at 770 °C (the Curie point, Tc) iron becomes magnetic. Iron is of greatest importance when mixed with certain other metals and with carbon to form steels. There are many types of steels, all with different properties, and an understanding of the properties of the allotropes of iron is key to the manufacture of good quality steels.


Naturally occurring iron consists of four stable isotopes: 5.845% of 54Fe, 91.754% of 56Fe, 2.119% of 57Fe and 0.282% of 58Fe. The nuclide 54Fe is predicted to undergo double beta decay, but this process had never been observed experimentally for these nuclei, and only the lower limit on the half-life was established: t1/2>3.1×1022 years. 60Fe is an extinct radionuclide of long half-life (2.6 million years).

Much of the past work on measuring the isotopic composition of Fe has focused on determining 60Fe variations due to processes accompanying nucleosynthesis (i.e., meteorite studies) and ore formation. In the last decade however, advances in mass spectrometry technology have allowed the detection and quantification of minute, naturally occurring variations in the ratios of the stable isotopes of iron. Much of this work has been driven by the Earth and planetary science communities, although applications to biological and industrial systems are beginning to emerge.

The most abundant iron isotope 56Fe is of particular interest to nuclear scientists as it represents the most common endpoint of nucleosynthesis. It is often cited, falsely, as the isotope of highest binding energy, a distinction which actually belongs to Nickel-62.[12] Since 56Ni is easily produced from lighter nuclei in the alpha process in nuclear reactions in supernovae (see silicon burning process), nickel-56 (14 alpha particles) is the endpoint of fusion chains inside extremely massive stars, since addition of another alpha particle would result in zinc-60, which requires a great deal more energy. This nickel-56, which has a half-life of about 6 days, is therefore made in quantity in these stars, but soon decays by two successive positron emissions within supernova decay products in the supernova remnant gas cloud, to first radioactive cobalt-56, and then stable iron-56. This last nuclide is therefore common in the universe, relative to other stable metals of approximately the same atomic weight.


Iron is created by extremely large, extremely hot (over 2.5 billion kelvin) stars, through a process called the silicon burning process. It is the heaviest stable element to be produced in this manner. The process starts with the second largest stable nucleus created by silicon burning: calcium. One stable nucleus of calcium fuses with one helium nucleus, creating unstable titanium. Before the titanium decays, it can fuse with another helium nucleus, creating unstable chromium. Before the chromium decays, it can fuse with another helium nucleus, creating unstable iron. Before the iron decays, it can fuse with another helium nucleus, creating unstable nickel-56. Any further fusion of nickel-56 consumes energy instead of producing energy, so after the production of nickel-56, the star does not produce the energy necessary to keep the core from collapsing. Eventually, the nickel-56 decays to unstable cobalt-56 which, in turn decays to stable iron-56 When the core of the star collapses, it creates a Supernova. Supernovas also create additional forms of stable iron via the r-process.


Comments Off on Applications


Iron is the most widely used of all the metals, accounting for 95% of worldwide metal production.[citation needed] Its low cost and high strength make it indispensable in engineering applications such as the construction of machinery and machine tools, automobiles, the hulls of large ships, and structural components for buildings. Since pure iron is quite soft, it is most commonly used in the form of steel.

Commercially available iron is classified based on purity and the abundance of additives. Pig iron has 3.5–4.5% carbon[47] and contains varying amounts of contaminants such as sulfur, silicon and phosphorus. Pig iron is not a saleable product, but rather an intermediate step in the production of cast iron and steel from iron ore. Cast iron contains 2–4% carbon, 1–6% silicon, and small amounts of manganese. Contaminants present in pig iron that negatively affect material properties, such as sulfur and phosphorus, have been reduced to an acceptable level. It has a melting point in the range of 1420–1470 K, which is lower than either of its two main components, and makes it the first product to be melted when carbon and iron are heated together. Its mechanical properties vary greatly, dependent upon the form carbon takes in the alloy.

“White” cast irons contain their carbon in the form of cementite, or iron carbide. This hard, brittle compound dominates the mechanical properties of white cast irons, rendering them hard, but unresistant to shock. The broken surface of a white cast iron is full of fine facets of the broken carbide, a very pale, silvery, shiny material, hence the appellation.

Apart from traditional applications, iron is also used for protection from ionizing radiation. Although it is lighter than another traditional protection material, lead, it is much stronger mechanically. The attenuation of radiation as a function of energy is shown in the graph.

The main disadvantage of iron and steel is that pure iron, and most of its alloys, suffer badly from rust if not protected in some way. Painting, galvanization, passivation, plastic coating and bluing are all used to protect iron from rust by excluding water and oxygen or by cathodic protection.

Biological role

Iron is abundant in biology. Iron-proteins are found in all living organisms, ranging from the evolutionarily primitive archaea to humans. The color of blood is due to the hemoglobin, an iron-containing protein. As illustrated by hemoglobin, iron often is bound to cofactors, e.g. in hemes. The iron-sulfur clusters are pervasive and include nitrogenase, the enzymes responsible for biological nitrogen fixation. Influential theories of evolution have invoked a role for iron sulfides, iron-sulfur world theory.

Iron is a necessary trace element found in nearly all living organisms. Iron-containing enzymes and proteins, often containing heme prosthetic groups, participate in many biological oxidations and in transport. Examples of proteins found in higher organisms include hemoglobin, cytochrome, and catalase.

Health and diet

Iron is pervasive, but particularly rich sources of dietary iron include red meat, lentils, beans, poultry, fish, leaf vegetables, tofu, chickpeas, black-eyed peas, blackstrap molasses, fortified bread, and fortified breakfast cereals. Iron in low amounts is found in molasses, teff and farina. Iron in meat (heme iron) is more easily absorbed than iron in vegetables. Although most studies suggest that heme/hemoglobin from red meat has effects which may increase the likelihood of colorectal cancer, there is still some controversy, and even a few studies suggesting that there is not enough evidence to support such claims.

Iron provided by dietary supplements is often found as iron(II) fumarate, although iron sulfate is cheaper and is absorbed equally well. Elemental iron, or reduced iron, despite being absorbed at only one third to two thirds the efficiency (relative to iron sulfate), is often added to foods such as breakfast cereals or enriched wheat flour. Iron is most available to the body when chelated to amino acids and is also available for use as a common iron supplement. Often the amino acid chosen for this purpose is the cheapest and most common amino acid, glycine, leading to “iron glycinate” supplements.The Recommended Dietary Allowance (RDA) for iron varies considerably based on age, gender, and source of dietary iron (heme-based iron has higher bioavailability). Infants may require iron supplements if they are bottle-fed cow’s milk. Blood donors and pregnant women are at special risk of low iron levels and are often advised to supplement their iron intake.

On the other hand excess accumulation of iron in the body also can cause a lot of harm in the form of disease which can be dangerous and treatment can be expensive.

Argex to upscale titanium dioxide pilot plant

Comments Off on Argex to upscale titanium dioxide pilot plant

Metal-Pages and the Dubai Multi Commodities Centre are pleased to present “Light Metals 2012” to be held in Dubai 12-14 February 2012. Delegates from all over the world will be joining us in Dubai to exchange views and to focus on the key issues facing the magnesium, manganese, silicon, titanium and lithium industries. There will be in-depth presentations from analysts, producers, consumers and traders providing valuable insights on the latest trends along with opportunities to network with delegates, making this an important event to put in your diary.

Read the full article here:
Argex to upscale titanium dioxide pilot plant

MMX, Brazil, Scraps Chile Iron Ore Project over Costs

Comments Off on MMX, Brazil, Scraps Chile Iron Ore Project over Costs

Part of the billionaire Eike Batista’s EBX group, SAO PAOLO (Brazilian iron-ore miner MMX) said that they are scrapping a mining project in the Chile, walking away from the investment they have already made to focus priority project at home.

The decision by MMX Mineracao and Metalicos would mean a balance sheet write down of 224-million reais, the company said in a securities filing, but it may reassure analysts worried that MMX needs to focus more on its most promising projects.

“We’re revising the business model of the company, seeking greater added value for our shareholders”, Carlos Gonzalez (CEO at the company) said in a filing to the security regulator declaring the cancellation of the project near Copiapp in northern Chile.

MMX said that new conditions affecting power supplies and transport for the project in the Atacama desert area had made it less attractive. The company made its investments in a railway and port. A press officer said that the project was at the geological mapping stage. MMX has iron-ore mining operations in Brazil and its own port. MMX said it was focused on the opening Superporto Sudeste port in Rio de Janeiro at the end of this year and with this, it will ship high-quality iron-ore to steelmakers broad.

Construction delays and cost overruns at projects have crimped cash for investment at the time when many people believe a decade of price increases driven by the Chinese demand may be at an end.

The companies in the EBX operate in sectors from oil and mining production to shipbuilding and logistics. The companies’ shares suffered last year and because of this experience, investors are nervous about delays to projects and disappointing output from oil until OGS.